Incidence rate estimation, periodic testing and the limitations of the mid-point imputation approach
نویسندگان
چکیده
Background It is common to use the mid-point between the latest-negative and earliest-positive test dates as the date of the infection event. However, the accuracy of the mid-point method has yet to be systematically quantified for incidence studies once participants start to miss their scheduled test dates. Methods We used a simulation-based approach to generate an infectious disease epidemic for an incidence cohort with a high (80-100%), moderate (60-79.9%), low (40-59.9%) and poor (30-39.9%) testing rate. Next, we imputed a mid-point and random-point value between the participant's latest-negative and earliest-positive test dates. We then compared the incidence rate derived from these imputed values with the true incidence rate generated from the simulation model. Results The mid-point incidence rate estimates erroneously declined towards the end of the observation period once the testing rate dropped below 80%. This decline was in error of approximately 9%, 27% and 41% for a moderate, low and poor testing rate, respectively. The random-point method did not introduce any systematic bias in the incidence rate estimate, even for testing rates as low as 30%. Conclusions The mid-point assumption of the infection date is unjustified and should not be used to calculate the incidence rate once participants start to miss the scheduled test dates. Under these conditions, we show an artefactual decline in the incidence rate towards the end of the observation period. Alternatively, the single random-point method is straightforward to implement and produces estimates very close to the true incidence rate.
منابع مشابه
An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods
Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملEstimation of genotype imputation accuracy using reference populations with varying degrees of relationship and marker density panel
Genotype imputation from low-density to high-density (SNP) chips is an important step before applying genomic selection, because denser chips can provide more reliable genomic predictions. In the current research, the accuracy of genotype imputation from low and moderate-density panels (5K and 50K) to high-density panels in the purebred and crossbred populations was assessed. The simulated popu...
متن کاملDrift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data
Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...
متن کامل